Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I

Thursday, 16th January 2014, 9:30 a.m.- 11:30 a.m.
Candidates should submit answers to a maximum offour questions that include an answer to at least one question in each section.

Please start the answer to each question on a new page.
All questions will carry equal marks.
Do not turn over until told that you may do so.

Section A - Mathematical Methods

Question 1

(a) (i) Find the general solution of the Cauchy Euler differential equation:

$$
\begin{equation*}
L y \equiv x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0 \tag{1}
\end{equation*}
$$

for $1<x<2$.
(ii) Consider the boundary value problem

$$
\begin{equation*}
L y(x)=f(x), \quad 1<x<2, \quad y(1)-\frac{\mathrm{d} y}{\mathrm{~d} x}(1)=0, \quad y(2)=0 \tag{2}
\end{equation*}
$$

with $L y$ as in (1). Write down two equivalent problems for the Green's function $g(x, \xi)$:
(I) using the delta function $\delta(x)$;
(II) using only classical functions and with appropriate conditions at $x=\xi$.

You do not need to compute $g(x, \xi)$ explicitly.
(b) The set C_{0}^{∞} denotes the set of "test" functions, i.e. all functions that have compact support and have derivatives of arbitrary order.
(i) Define what it means to say that the map $T: C_{0}^{\infty} \rightarrow \mathbb{R}$ is a distribution.
(ii) Show that $x \delta^{\prime}(x)=-\delta(x)$ in the distributional sense.

Question 2

The integral operator L is defined by

$$
L y \equiv \int_{0}^{\pi} k(x, t) y(t) \mathrm{d} t
$$

where $k(x, t)$ is real and continuous.
(a) If $k(x, t)=-k(t, x)$, show that $L^{*}=-L$ and that the eigenvalues λ_{k} satisfying

$$
L y_{k}=\lambda_{k} y_{k}
$$

are purely imaginary.
[8 marks]
(b) Find the eigenvalues of finite multiplicity, and the corresponding eigenfunctions, when $k(x, t)=$ $\sin 2 x+\sin 2 t$. Give an example of an eigenfunction corresponding to $\lambda=0$.
[9 marks]
(c) Consider the integral equation $L y=\alpha y+\cos x$. Determine for which real α there is a unique solution $y(x)$ (you do not need to find it).

Question 3

The differential operator L is defined by

$$
\begin{equation*}
L y \equiv y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x) \tag{3}
\end{equation*}
$$

(a) Show that

$$
\lambda_{k}=\pi^{2} k^{2}, \quad y_{k}=e^{x} \cos (k \pi x), \quad k=0,1,2, \ldots
$$

are eigenvalues and eigenfunctions of $L y_{k}=-\lambda_{k} y_{k}$, given the boundary conditions

$$
\begin{equation*}
y(0)-y^{\prime}(0)=0, \quad y(1)-y^{\prime}(1)=0 \tag{4}
\end{equation*}
$$

(b) Find the adjoint problem for the operator (3) and boundary conditions (4).
(c) You may use without proof that $w_{k}=e^{-x} \cos (k \pi x)$ are adjoint eigenfunctions. Use the eigenfunctions and their adjoints to obtain a formula for the coefficients in an eigenfunction expansion

$$
y=\sum_{n=0}^{\infty} c_{k} y_{k}(x)
$$

for the solution of the problem

$$
\begin{aligned}
& y^{\prime \prime}(x)-2 y^{\prime}(x)+a y(x)=e^{2 x} \\
& y(0)-y^{\prime}(0)=3, \quad y(1)-y^{\prime}(1)=2
\end{aligned}
$$

where $a<0$ is a real constant.
You may assume, without proof, that all eigenvalues/eigenfunctions are as listed in part (a) above. Also, you do not need to evaluate the integrals in the formulae for c_{k}.

Question 4

We consider here polynomial solutions of Hermite's equation

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+2 n y=0 \tag{5}
\end{equation*}
$$

where n is a non-negative integer.
(a) Classify $x=\infty$ as an ordinary, regular singular, or irregular singular point of the ODE, giving reasons for your answer.
(b) The Rodrigues' formula for the nth order Hermite polynomials is given by

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) \tag{6}
\end{equation*}
$$

Prove that H_{n} given by (6) is a solution of Hermite's equation (5).
(c) By converting to Sturm-Liouville form, obtain an orthogonality relation for the Hermite polynomials. Using (without proof) that the region of integration is $(-\infty, \infty)$, verify the orthogonality relation for functions $H_{n}(x), H_{m}(x)$ given by (6) when $n \neq m$.

Section B - Further Mathematical Methods

Question 5

Suppose the functions x and y minimise the functional

$$
J[x, y]=\int_{0}^{T} F(t, x, \dot{x}, y, \dot{y}) \mathrm{d} t
$$

over all $x, y \in C^{2}[0, T]$, subject to $x(0)=a, y(0)=b, x(T)=c, y(T)=d$, where F is continuously differentiable, and a dot represents $\mathrm{d} / \mathrm{d} t$.
(a) Show that x and y satisfy the Euler equations

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial F}{\partial \dot{x}}\right)-\frac{\partial F}{\partial x}=0 \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial F}{\partial \dot{y}}\right)-\frac{\partial F}{\partial y}=0
\end{aligned}
$$

(b) The Hamiltonian, H, is given by

$$
H=\dot{x} \frac{\partial F}{\partial \dot{x}}+\dot{y} \frac{\partial F}{\partial \dot{y}}-F
$$

Show that

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=-\frac{\partial F}{\partial t}
$$

(c) Two unit masses at positions $x(t)$ and $y(t)$ are connected by a spring with spring constant k and natural length 1. They are to be moved from $x(0)=0, y(0)=1$ to $x(T)=1, y(T)=4$ in such a way as to minimise the total energy

$$
\int_{0}^{T}\left[\dot{x}^{2}+\dot{y}^{2}+k(y-x-1)^{2}\right] \mathrm{d} t .
$$

(i) Show that the average velocity $(\dot{x}+\dot{y}) / 2$ is constant during the motion.
(ii) Find the optimal trajectories $x(t)$ and $y(t)$.

Question 6

(a) Find the stationary points of the system

$$
\begin{aligned}
\dot{x} & =\mu y+y^{3} \\
\dot{y} & =-x+(\mu-1) y-y^{3}
\end{aligned}
$$

Classify the stationary point at the origin as a function of the parameter μ.
What kind of bifurcation happens at $\mu=0$?
What kind of bifurcation happens at $\mu=1$?
(b) Now suppose $\mu=1+\epsilon$. By writing $x=\epsilon^{1 / 2} X, y=\epsilon^{1 / 2} Y$ use the Poincaré-Lindstedt method to find the periodic orbit when $0<\epsilon \ll 1$. Show that the frequency of the oscillation is

$$
\omega=1+\epsilon+O\left(\epsilon^{2}\right)
$$

and find the leading-order amplitude.
[You may use the identities

$$
\begin{aligned}
& \sin ^{3} \tau=\frac{3 \sin \tau}{4}-\frac{\sin 3 \tau}{4}, \quad \sin ^{2} \tau \cos \tau=\frac{\cos \tau}{4}-\frac{\cos 3 \tau}{4} \\
& \cos ^{2} \tau \sin \tau=\frac{\sin \tau}{4}+\frac{\sin 3 \tau}{4}, \quad \cos ^{3} \tau=\frac{3 \cos \tau}{4}+\frac{\cos 3 \tau}{4}
\end{aligned}
$$

without proof.]

